Abstract

AbstractWe consider a finite horizon linear discrete time varying system whose input is a random noise with an imprecisely known probability law. The statistical uncertainty is described by a nonnegative parameter a which constrains the anisotropy of the noise as an entropy theoretic measure of deviation of the actual noise distribution from Gaussian white noise laws with scalar covariance matrices. The worst-case disturbance attenuation capabilities of the system with respect to the statistically uncertain random inputs are quantified by the a-anisotropic norm which is a constrained operator norm of the system. We establish an anisotropic norm bounded real lemma which provides a state-space criterion for the a-anisotropic norm of the system not to exceed a given threshold. The criterion is organized as an inequality on the determinants of matrices associated with a difference Riccati equation and extends the Bounded Real Lemma of the ℋ∞-control theory. We also provide a necessary background on the anisotropy-based robust performance analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.