Abstract

Bovine horns are durable that they can withstand an extreme loading force which with special structures and mechanical properties. In this study, the authors apply quasi-static nanoindentation and modulus mapping techniques to research the nanomechanical properties of bovine horn in the transverse direction (TD) and longitudinal direction (LD). In quasi-static nanoindentation, the horn's modulus and hardness in the inner layer and the outer layer demonstrated a gradual increase in both TD and LD. Laser scanning confocal microscopy revealed microstructure in the horn with wavy morphology in the TD cross-section and laminate in the LD cross-section. When using tensile tests or quasi-static nanoindentation tests alone, the anisotropy of the mechanical properties of bovine horn were not obvious. However, when using modulus mapping, storage modulus (E'), loss modulus (E″) and loss ratio (tan δ) are clearly different depending on the position in the TD and LD. Modulus mapping is proposed as accurately describing the internal structures of bovine horn and helpful in understanding the horn's energy-absorption, stiffness and strength that resists forces during fighting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.