Abstract

The quintet triplet-pair state may be generated upon singlet fission and is a critical intermediate that dictates the fate of excitons, which can be exploited for photovoltaics, information technologies, and biomedical imaging. In this report, we demonstrate that continuous-wave and pulsed electron spin resonance techniques such as phase-inverted echo-amplitude detected nutation (PEANUT), which have emerged as the primary tool for identifying the spin pathways in singlet fission, probe fundamentally different triplet-pair species. We directly observe that the generation rate of high-spin triplet pairs is dependent on the molecular orientation with respect to the static magnetic field. Moreover, we demonstrate that this observation can prevent incorrect analysis of continuous-wave electron spin resonance (cw-ESR) measurements and provide insight into the design of materials to target specific pathways that optimize exciton properties for specific applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call