Abstract

In this paper, in the framework of the Brans–Dicke [Phys. Rev. 124 (1961) 925] Gravitation theory, we propose to study the spatially homogeneous, anisotropic and axially symmetric model filled with dark matter and dark energy. Here, we consider the modified holographic Ricci dark energy proposed by Chen and Jing [Phys. Rev. B 679 (2009) 144] as a feasible state of darkness. To achieve a solution, we consider the time-dependent deceleration parameter, which contributes to the average scale factor of [Formula: see text], where [Formula: see text] and [Formula: see text] are arbitrary constants. We have derived field equations of Brans–Dicke theory of gravitation with the help of an axially symmetric anisotropic Bianchi-type space-time. We have determined the cosmological parameters, namely, deceleration parameter, matter energy density, anisotropic dark energy density, BD scalar field, skewness parameter, EoS parameter and jerk parameter. Here, the various phenomena like the Big Bang, expanding the universe, and shift from anisotropy to isotropy are observed in the model. A comprehensive physical debate of these dynamic parameters is provided through a graphical representation. We observe that we have a quintessence model that exhibits a smooth transition from decelerated stage to an accelerated phase of the universe. This situation is in complete agreement with the modern cosmology scenario. Some physical and geometric behaviors are also discussed and discovered to be in excellent agreement with SNe Ia Supernova’s latest observations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call