Abstract
By comparing the properties of In and Pb quantum wells in a scanning tunneling microscopy subsurface imaging experiment, we found the existence of lateral bound states, a 2D Mott-Hubbard correlation gap, induced by transverse confinement. Its formation is attributed to spin or charge overscreening of quasi-2D excitations. The signature of the 2D confinement-deconfinement transition is also experimentally observed, with the correlation gap being pinned in the middle of the conduction band. A self-organized 2D Anderson lattice is suggested as a new ground state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.