Abstract

Abstract The simulation of cardiac electrophysiology requires small time steps and a fine mesh in order to resolve very sharp, but highly localized, wavefronts. The use of very high resolution meshes containing large numbers of nodes results in a high computational cost, both in terms of CPU hours and memory footprint. In this paper an anisotropic mesh adaptivity technique is implemented in the Chaste physiological simulation library in order to reduce the mesh resolution away from the depolarization front. Adapting the mesh results in a reduction in the number of degrees of freedom of the system to be solved by an order of magnitude during propagation and 2–3 orders of magnitude in the subsequent plateau phase. As a result, a computational speedup by a factor of between 5 and 12 has been obtained with no loss of accuracy, both in a slab-like geometry and for a realistic heart mesh with a spatial resolution of 0.125 mm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.