Abstract

In recent years, the two-dimensional (2D) orthorhombic SiP2 flake has been peeled off successfully by micromechanical exfoliation and it exhibits an excellent performance in photodetection. In this paper, we investigated the mechanical properties and the origin of its anisotropy in an orthorhombic SiP2 monolayer through first-principles calculations, which can provide a theoretical basis for utilizing and tailoring the physical properties of a 2D orthorhombic SiP2 in the future. We found that the Young's modulus is up to 113.36 N/m along the a direction, while the smallest value is only 17.46 N/m in the b direction. The in-plane anisotropic ratio is calculated as 6.49, while a similar anisotropic ratio (~6.55) can also be observed in Poisson's ratio. Meanwhile, the in-plane anisotropic ratio for the fracture stress of the orthorhombic SiP2 monolayer is up to 9.2. These in-plane anisotropic ratios are much larger than in black phosphorus, ReS2, and biphenylene. To explain the origin of strong in-plane anisotropy, the interatomic force constants were obtained using the finite-displacement method. It was found that the maximum of interatomic force constant along the a direction is 5.79 times of that in the b direction, which should be considered as the main origin of the in-plane anisotropy in the orthorhombic SiP2 monolayer. In addition, we also found some negative Poisson's ratios in certain specific orientations, allowing the orthorhombic SiP2 monolayer to be applied in next-generation nanomechanics and nanoelectronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call