Abstract
{hbox {SrIrO}}_{3}, the three-dimensional member of the Ruddlesden–Popper iridates, is a paramagnetic semimetal characterised by a the delicate interplay between spin–orbit coupling and Coulomb repulsion. In this work, we study the anisotropic magnetoresistance (AMR) of {hbox {SrIrO}}_{3} thin films, which is closely linked to spin–orbit coupling and probes correlations between electronic transport, magnetic order and orbital states. We show that the low-temperature negative magnetoresistance is anisotropic with respect to the magnetic field orientation, and its angular dependence reveals the appearance of a fourfold symmetric component above a critical magnetic field. We show that this AMR component is of magnetocrystalline origin, and attribute the observed transition to a field-induced magnetic state in {hbox {SrIrO}}_{3}.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.