Abstract
We focus on rare-earth-free anti-perovskite Mn4−xNixN epitaxial films, which can be used for ultrafast current-induced domain wall motion (CIDWM) in magnetic strips. The magneto-transport properties of these materials are very important for a deep understanding of CIDWM. In this study, we investigated the magneto-transport properties of Mn4−xNixN epitaxial films grown on SrTiO3(001) and MgO(001) substrates through anisotropic magnetoresistance (AMR) measurements at temperatures between 2 and 300 K. In samples with a small Ni composition such as x = 0.05−0.1, the AMR ratio of Mn4−xNixN drastically decreased with increasing temperature. We also analyzed the twofold and fourfold symmetries in the AMR curves. Fourfold symmetry is caused by tetragonal crystal fields and is unique to anti-perovskite 3d-metal nitrides such as Mn4N and Fe4N. Only slight fourfold symmetry was observed in Mn4−xNixN. We also performed first-principles calculations with the Vienna ab initio simulation package (VASP) to obtain the projected density of states (PDOS) of d orbitals in Mn4−xNixN, which is responsible for the magnetism of these materials. We conclude that these results are due to the Ni atoms, which function as magnetic impurities and lead to a noticeable change in PDOS, as proved by VASP calculation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.