Abstract

The FMR linewidth and its anisotropy in F$_1$/f/F$_2$/AF multilayers, where spacer f has a low Curie point compared to the strongly ferromagnetic F$_1$ and F$_2$, is investigated. The role of the interlayer exchange coupling in magnetization relaxation is determined experimentally by varying the thickness of the spacer. It is shown that stronger interlayer coupling via thinner spacers enhances the microwave energy exchange between the outer ferromagnetic layers, with the magnetization of F$_2$ exchange-dragged by the resonance precession in F$_1$. A weaker mirror effect is also observed: the magnetization of F$_1$ can be exchange-dragged by the precession in F$_2$, which leads to anti-damping and narrower FMR linewidths. A theory is developed to model the measured data, which allows separating various contributions to the magnetic relaxation in the system. Key physical parameters, such as the interlayer coupling constant, in-plane anisotropy of the FMR linewidth, dispersion of the magnetic anisotropy fields are quantified. These results should be useful for designing high-speed magnetic nanodevices based on thermally-assisted switching.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.