Abstract
The lateral wet oxidation of aluminum-containing III–V-semiconductors is a technological process which converts a buried (thin) cristalline material into an amorphous insulator and, as such, tends to exhibit an anisotropic behavior. As a result, the shape of the interface between the semiconductor and the insulator, often referred as the oxide aperture, differs from the etched mesa contour from which the oxidation proceeds. This, in turn, complicates the design of the devices relying on this process especially when specific oxide patterns are needed. In this paper, we introduce a method based on a morphological dilatation to determine the shape of the mesas which will lead to a specific targetted contour upon an anisotropic oxidation over a modest extent. The approach is experimentally validated by demonstrating the fabrication of circular oxide apertures which are inherently difficult to make because of their high degree of symmetry but which also turn out to be of critical importance in obtaining efficient single-mode vertical-cavity surface-emittting lasers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.