Abstract
Nonhydrostatic stress, an often‐ignored source of seismic anisotropy, is universally present in the subsurface and may be as common as intrinsic or fracture‐induced anisotropy. Nonhydrostatic stress, applied to an initially transversely isotropic solid with vertical symmetry axis (VTI), results in an effective medium having almost orthorhombic symmetry (provided that one of the principal stresses is aligned with the symmetry axis). The symmetry planes observed in this orthorhombic medium are aligned with the orientations of the principal stresses, and anisotropic parameters (e(1,2), δ(1,2,3), and γ(1,2)) can reveal information about the stress magnitudes. Thus, time‐lapse monitoring of changes in anisotropy potentially can provide information on temporal variations in the stress field.We use nonlinear elasticity theory to relate the anisotropic parameters to the magnitudes of the principal stresses and verify these relationships in a physical modeling study. Under the assumption of weak background and str...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.