Abstract
The in-plane spin splitting of conduction-band electron has been investigated in an asymmetric (001) GaAs/AlxGa1-xAs quantum well by time-resolved Kerr rotation technique under a transverse magnetic field. The distinctive anisotropy of the spin splitting was observed while the temperature is below approximately 200 K. This anisotropy emerges from the combined effect of Dresselhaus spin-orbit coupling plus asymmetric potential gradients. We also exploit the temperature dependence of spin-splitting energy. Both the anisotropy of spin splitting and the in-plane effective g-factor decrease with increasing temperature.PACS: 78.47.jm, 71.70.Ej, 75.75.+a, 72.25.Fe,
Highlights
The properties of spins in semiconductor materials have attracted much more attentions since the invention of spintronics and spin-based quantum information [1,2,3]
Where the point symmetry group is reduced to D2d, in a rectangular/symmetric quantum well (QW) grown on the (001)-orientated substrate, the effective g-factor can have different values for B applied in the direction normal to the plane of QW and for B in the plane of the QW due to the additional potential confinement: gxx = gyy ≠ gzz (x//[100]) [5,6,7,10]
Where the symmetry is reduced to C2v in an asymmetric QW with the inversion-asymmetric confining potentials, the effective g-factor is dependent on the direction of an applied in-plane magnetic field, which results in the anisotropic Zeeman splitting [14]
Summary
The properties of spins in semiconductor materials have attracted much more attentions since the invention of spintronics and spin-based quantum information [1,2,3]. Where the symmetry is reduced to C2v in an asymmetric QW with the inversion-asymmetric confining potentials, the effective g-factor is dependent on the direction of an applied in-plane magnetic field, which results in the anisotropic Zeeman splitting [14]. The anisotropic spin splitting was measured experimentally at B > 0 with an applied external electric field to reduce the symmetry of quantum film but interpreted in terms of anisotropic effective g-factor by Oestreich et al [9] In this Letter, we use the time-resolved Kerr rotation (TRKR) [15,16] technique to study the in-plane spin splitting via the accurate measurements of the Larmor procession frequency in a specially designed (001) GaAs/AlGaAs undoped QW with asymmetric confined barriers under an in-plane magnetic field. We show that the spin splitting is found to be obviously anisotropic for B parallel to [110] and [1,2,3,4,5,6,7,8,9,10]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.