Abstract

Melt electrowriting (MEW) is mostly applied to print complex three-dimensional (3D) structures using traditional, relatively hydrophobic polymers, such as polycaprolactone. Here, we 3D printed a supramolecular hydrophilic polymer into a solid micrometer-sized fiber structure, solely held together via non-covalent interactions. Interestingly, the solid fibers showed anisotropic swelling in a humid environment as demonstrated by the longitudinal and transverse surface strain determined using a novel global digital height correlation algorithm. This anisotropy in swelling is proposed to originate from a shear-induced orientation of crystals packed into lamellae as shown with small-angle x-ray scattering measurements. The MEW fibers were dried after swelling to study structural differences. Remarkably, no differences in nano-structural conformation in the micrometer-sized fibers was observed after swelling and subsequent drying. In conclusion, a free-standing supramolecular polymer-based hydrogel scaffold, displaying anisotropic hygro-expansion, is shown to be produced using MEW. This unique combination of 3D printing, via a top-down approach, and supramolecular polymer chemistry, via a bottom-up approach, provides new ways to introduce anisotropy and hierarchy in aqueous supramolecular systems. This will open the door towards even more complex hierarchical structures with unprecedented properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call