Abstract

Group-VA elemental monolayers, such as arsenene, antimonene, and bismuthene, are predicted to be wide band gap semiconductors, which are potential candidates for future nanodevices in spintronics and optoelectronics. We employ first-principles calculations to investigate the atomic structures and electronic properties of one-third-hydrogenated (OTH) group-VA elemental monolayers, that is, OTH-X (X = arsenene, antimonene, or bismuthene). Because of the hydrogenation, the threefold rotation symmetry of group-VA elemental monolayers is annihilated. This leads to the anisotropic electronic and optical properties, such as carrier (electron or hole) mobility and light absorbance. The band gaps of OTH-X are also tuned effectively compared to those of pristine group-VA elemental monolayers. Remarkably, OTH-bismuthene (OTH-Bi) shows an energy band gap inversion induced by external compression, implying a topological phase transition. Furthermore, the carrier mobilities of OTH-Bi for electron and hole along the zig-zag direction are on the order of 105 cm2 V–1 s–1, which is comparable to those of graphene. The hole mobilities of OTH-arsenene (OTH-As) and OTH-antimonene (OTH-Sb) along the zig-zag direction can reach as high as 3.8 × 104 and 3.0 × 103 cm2 V–1 s–1, respectively. Our results show that atomically precise functionalization of two-dimensional materials can effectively enhance the intrinsic electrical properties, which may have potential applications in future electronic and spintronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.