Abstract

SummaryImplementation and analysis of the anisotropic version of the Gurson‐Tvergaard‐Needleman (GTN) isotropic damage criterion are performed on the basis of Hill's quadratic anisotropic yield theory with the definition of an effective anisotropic coefficient to represent the elastic‐plastic behavior of ductile metals. This study aims to analyze the extension of the GTN model suitable for anisotropic porous metals and to investigate the GTN model extension. An anisotropic damage model is implemented using the user material subroutine in ABAQUS/standard finite element code. The implementation is verified and applied to simulate a uniaxial tensile test on a commercially produced aluminum sheet material for three‐dimensional and plane stress test cases. Spherical and ellipsoidal micro voids are considered in the matrix material, and their effects on the uniaxial stress‐strain response of the material are analyzed. Hill's quadratic anisotropic yield theory predicts substantially large damage evolution and a low stress‐strain curve compared with those predicted by the isotropic model. An approximate model for anisotropic materials is proposed to avoid increased damage evolution. In this approximate model, Hill's anisotropic constants are replaced with an effective anisotropy coefficient. All model‐generated stress‐strain predictions are compared with the experimental stress‐strain curve of AA6016‐T4 alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call