Abstract

The anisotropic Fourier Heat Conduction Equation (FHCE) and the multidimensional phonon Boltzmann Transport Equation (BTE) were solved numerically in cylindrical coordinates and in time domain to simulate a Time Domain Thermo-Reflectance (TDTR) experimental silicon/aluminum substrate/transducer setup. The out-of-phase response of the probe laser was predicted at various beam offset distances for a pump laser pulse frequency of 80 MHz and modulation frequency of 10 MHz and compared against experimental measurements for a silicon substrate. The isotropic FHCE was also solved for comparison. Results show that the isotropic FHCE with bulk thermal conductivity of 145 W/m/K significantly underpredicts the out-of-phase temperature difference, particularly at smaller beam offsets. With an isotropic thermal conductivity of 105 W/m/K, the computed results match experimental data at smaller beam offsets well, but overpredicts the experimental data at larger beam offsets. An almost-perfect match is obtained by using an anisotropic thermal conductivity wherein the radial (in-plane) thermal conductivity is set to 85 W/m/K and the axial (through-plane) conductivity is set to 130 W/m/K. The multidimensional frequency and polarization dependent phonon BTE is next solved. The BTE results for the out-of-phase temperature difference match experimental observations well at small and intermediate beam offsets, but overpredicts the experimental data at larger beam offsets. FHCE results are fitted to the BTE predictions, and the extracted (best fit) thermal conductivity is found to be 110 W/m/K.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call