Abstract
Measurements of the fluctuation magnetoconductivity as a function of both the magnetic field up to 13 T and the temperature in thin films of Bi2Sr2Ca2Cu3Ox are presented. The variation of the magnetoconductivity with the magnetic field strength is quadratic at temperatures distantly above the critical temperatureT c and changes to an entirely negative curvature nearT c . The latter behavior is attributed to an inhomogeneous critical temperature in the films. The results are analyzed in terms of recent theoretical models for fluctuation-enhanced magnetoconductivity in layered superconductors. The magnetoconductivity in a magnetic field oriented normal to the copper-oxide layers is dominated by the orbital contribution of the Aslamazov-Larkin effect. The magnetoconductivity in the parallel orientation is distinctly smaller and provides evidence for the corresponding Zeeman contribution. The latter measurement also indicates that the Maki-Thompson process may be insignificant in Bi2Sr2Ca2Cu3Ox.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.