Abstract

3D particle-in-cell simulations of the interaction of an ultra-intense linearly-polarized laser light with an over- dense plasma are presented. Intense laser radiation is shown to be unstable against modulation both in the direction of the laser propagation direction and in the direction perpendicular to the polarization direction. Growth rate of the instability has a maximum of the order of 0.1(omega) <SUB>0</SUB> when laser frequency (omega) <SUB>0</SUB> is of the order of the plasma frequency modified due to the relativistic increase of electron mass in the laser field. As a result the laser breaks up into clumps with the size of the relativistic collision-less skin depth. Analytical description of the instability is also presented. Dependence of the growth rate on the laser intensity and wavenumber of perturbations is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.