Abstract

We study the Fermi liquid properties of the cold atomic dipolar Fermi gases with the explicit dipolar anisotropy using perturbative approaches. Due to the explicit dipolar anisotropy, Fermi surfaces exhibit distortions of the $d_{r^2-3z^2}$-type in three dimensions and of the $d_{x^2-y^2}$-type in two dimensions. The fermion self-energy, effective mass, and Fermi velocity develop the same anisotropy at the Hartree-Fock level proportional to the interaction strength. The Landau interaction parameters in the isotropic Fermi liquids become the tri-diagonal Landau interaction matrices in the dipolar Fermi liquids which renormalize thermodynamic susceptibilities. With large dipolar interaction strength, the Fermi surface collapses along directions perpendicular to the dipole orientation. The dynamic collective zero sound modes exhibit an anisotropic dispersion with the largest sound velocity propagating along the polar directions. Similarly, the longitudinal p-wave channel spin mode becomes a propagating mode with an anisotropic dispersion in multi-component dipolar systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.