Abstract

We present quantum-beat spectroscopy of excited states of helium atoms populated selectively with high-order-harmonic emission below the atomic ionization potential by means of low-pass filtering of the pump radiation. The created electron wave packet is ionized by few-cycle infrared (IR) pulses leading to characteristic peaks in the photoelectron yield, which beat with a frequency proportional to the energy gap between the states involved in the two-color photoionization process. Minimizing the direct ionization by the extreme ultraviolet (XUV) radiation, we can follow the evolution of the electron wave packet also in the region of temporal pump-probe overlap. A detailed time-frequency analysis of the quantum beats and direct comparison with the solution of the time-dependent Schr\odinger equation reveal the existence of quantum beats characterized by a final state of mixed parity. Finally, we show that by varying the carrier-envelope offset phase of the probe pulse, one can optically control the preferred direction of photoelectron emission and the contrast of such beats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call