Abstract

The electron-distribution function in homogeneous plasmas heated by a high-frequency laser field is calculated in velocity space from the Vlasov-Landau equation. The kinetic model is valid for moderate laser intensity defined by the relevant parameter α=v_{0}^{2}/v_{t}^{2}<0.5 where v_{0} and v_{t} are the peak velocity of oscillation in the high-frequency electric field and the thermal velocity, respectively. The results obtained constitute an improvement of the results reported in the literature devoted to weak electric field intensities. The electron-distribution function is calculated solving the kinetic equation with the use of the Legendre polynomial expansion within the laser field dipole approximation. It results in an infinite set of equations for the isotropic component f_{0}(v) and the anisotropic components f_{n≥1}(v) that we have solved numerically with appropriate truncation. For the second anisotropy f_{2}(v), we found that its maximum increases from the weak electric field intensity (α<0.01) to a moderate one (α=0.5) by a factor f_{2max}(α=0.5)/f_{2max}(α=0.01)≈48. Applications to the radiation pressure, electromagnetic instabilities, and photoabsorption are also considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call