Abstract

This paper presents an improved soil model based on anisotropic critical state theory (ACST) and bounding surface plasticity. The ACST of Dafalias was extended into 3-D stress space. In addition to the isotropic hardening rule, rotational and distortional hardening rules were incorporated into the bounding surface formulation with an associated flow rule. The projection center that is used to map the actual stress point to the imaginary stress point was specified along the K-sub-0 line instead of the hydrostatic line or at the origin of the stress space. A simplified form of plastic modulus was used and the proposed model requires a total of 12 material parameters, the same number as that of the single-ellipse time-independent version of the Kaliakin--Dafalias model. The model was validated against the undrained isotropic and anisotropic triaxial test results under compression and extension shearing modes for Kaolin Clay, San Francisco Bay Mud, and Boston Blue Clay. The effects of stress anisotropy and overconsolidation were well captured by the model. The time effect was not included in formulations presented here.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.