Abstract

AbstractA non-contact optical technique based on laser-generated surface acoustic waves (SAWs) was used to characterize elastic properties of two types of thin (150-1100 nm) low-k films: more traditional non-porous organosilicate glass PECVD films (k=3.0) and novel mesoporous silica films fabricated in supercritical CO2 (k=2.2). The acoustic response of the non-porous samples is well described by a model of an elastically isotropic material with two elastic constants, Young's modulus and Poisson's ratio. Both parameters can be determined by analyzing SAW dispersion curves. However, the isotropic model fails to describe the SAW dispersion in the mesoporous samples. Modifying the model to allow a difference between in-plane and out-of plane properties (i.e., a transversely isotropic material) results in good agreement between the measurements and the model. The in-plane compressional modulus is found to be 2-3 times larger than the out-of plane modulus, possibly due to the anisotropic shape of the pores. Elastic anisotropy should therefore be taken into account in modeling mechanical behavior of low-k materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call