Abstract

A multiple scales method of analysing nonlinear guided-wave propagation in waveguides containing nonlinear dispersive anisotropic lossless materials is described. The procedure leads to systems of coupled wave equations which are generally in explicit Hamiltonian form. A specific system of third-order nonresonant nonlinearity in gallium arsenide with cleaved facets along (1 1 ̄ 0) planes and waveguide propagation along [1 1 0] directions is illustrated. Nonlinear CW stationary waves occurring in the most general system of two orthogonally polarised linear modes with slightly different propagation coefficients interacting through a third-order nonlinearity are classified, and their stability analysed with respect to both time-independent and time-dependent perturbations. It is shown that there are in general six different stationary states that may exist for a given total intensity of the wave. The qualitative dynamics and stability of these states are analysed using a geometrical representation of the Hamiltonian dynamics in a three-dimensional real space called Stokes space.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call