Abstract

Purpose of the present work is the analysis of the generalized Kolmogorov equation applied to the direct numerical simulation data of a turbulent channel flow. The multi-dimensional description of the anisotropic behavior of turbulent energy production, transport, and dissipation is shown to be relevant for the understanding and modeling of the wall-turbulent physics with special care to the phenomenon of reverse energy flux. These results are proven instrumental also for the correct computation of wall-turbulence when a large eddy simulation approach is considered. The capability of a filtered velocity field to correctly reproduce the wall-turbulent dynamics at different ranges of scales and wall-distances as a function of the filter length will be assessed via filtered direct numerical simulation (DNS) and large eddy simulation data. The possibility of new modeling approaches is also highlighted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.