Abstract
Leaded Free Machining Steel (FMS) specimens were tested in tension at quasi-static and high strain rates in both the longitudinal and transverse directions with respect to the axis of the bar material. For the quasi-static tests, a high degree of anisotropy of fracture behaviour was observed for both plain (unnotched) and notched specimens. However the difference in fracture strains for longitudinal and transverse directions was significantly reduced for the high stress triaxiality conditions produced by the sharper notches. Plain specimens tested at dynamic strain rates (103 s−1) failed at somewhat higher strains than those tested quasi-statically. For the notched specimens tested dynamically, there was a transition to a brittle mode of failure and there was no statistically significant anisotropy in the very low strains to failure recorded. These experimental results were linked to numerical predictions of the local stress, strain and strain rate conditions in the specimens carried out using a modified Armstrong–Zerilli constitutive model for the FMS. Changes in the percentage area and aspect ratio of the lead inclusions which act as sites for void growth under ductile failure conditions were measured for both longitudinal and transverse directions of loading. It was found that the apparent area of inclusions increases with degree of deformation due to void growth but that the aspect ratio decreases due to the inclusions/voids becoming more spherical. This effect was greater for loading in the transverse direction indicating that voids grow more readily from inclusions when the latter are aligned perpendicular to the direction of loading.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.