Abstract

Two furnace tests, using two different fire exposures, on unbonded post-tensioned concrete slabs (1700 × 1200 mm) are reported. Local curvature is measured along two lines approximately in the middle of the slabs both parallel (longitudinal) and orthogonal (transverse) to the prestressing direction. More pronounced curvature in the transverse direction is accompanied by the formation of cracks running predominantly in the longitudinal direction. While the transverse curvature relaxes back to the original state after the cooling phase the curvature in the longitudinal direction ultimately exhibits upward deflection due to the hogging moment caused by the prestress in the tendons acting on a cross section with temperature reduced mechanical properties at the fire exposed side. The effect on crack formation due to the prestressing can additionally be detected by ultrasonic pulse velocity measurements in the different directions through the depth of the slab, where a reduction of 5–25% is observed in the transverse direction compared to the longitudinal direction. The phenomenological mechanical behaviour of the slabs is captured in a finite element model which describes the evolution of stress in the prestressing tendons. This model additionally suggests that the curvature in the transverse direction is independent of the prestressing in the longitudinal direction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.