Abstract

The m-plane GaN films grown on LiAlO2(100) by metal-organic chemical vapor deposition exhibit anisotropic crystallographic properties. The Williamson–Hall plots point out they are due to the different tilts and lateral correlation lengths of mosaic blocks parallel and perpendicular to GaN[0001] in the growth plane. The symmetric and asymmetric reciprocal space maps reveal the strain of m-plane GaN to be biaxial in-plane compress εxx=−0.79% and εzz=−0.14% with an out-of-plane dilatation εyy=0.38%. This anisotropic strain further separates the energy levels of top valence band at Γ point. The energy splitting as 37meV as well as in-plane polarization anisotropy for transitions are found by the polarized photoluminescence spectra at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.