Abstract

Wet etching of silicon carbide typically exhibits poor etching efficiency and low aspect ratio. In this study, an etching structure that exploits anisotropic charge carrier flow to enable high-throughput, external-bias-free wet etching of high-aspect-ratio SiC micro/nano-structures is demonstrated. Specifically, by applying a catalytic metal coating at the bottom surface of a SiC wafer while introducing patterned ultraviolet light illumination from its top surface, spatial charge separation across the wafer is achieved, i.e., photogenerated electrons are channeled to the bottom to participate in the reduction reaction of an oxidant in the etchant solution, while holes flow to the top to trigger oxidation of SiC and subsequent etching. Such design largely suppresses recombination-induced charge losses, and when used in combination with a top metal catalyst mask, the structure yields a remarkable vertical etching rate of 0.737µmmin-1 and an aspect ratio of 3.2, setting new records for wet-etching methods for SiC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.