Abstract

We study effects of anisotropy (although low) on the ghost and generalized ghost dark energy (DE) models in the framework of fractal cosmology. We obtain the equation of state parameter, [Formula: see text], the deceleration parameter, and the evolution equation of the ghost and generalized ghost dark energy. We find that, in both models, [Formula: see text] cannot cross the phantom line and eventually the universe approaches a de-Sitter phase of expansion. We show that the anisotropy effects on ghost and generalized ghost dark energy (GDE) in fractal cosmology correspond to [Formula: see text]CDM limit on the statefinder plane. We evaluate the anisotropy effects on both the linear perturbation and the spherical collapse from the DE models and compare them with the results of the DE of the Friedmann–Robertson–Walker and [Formula: see text]CDM models. We also show that in ghost and generalized ghost cosmologies, the growth factor [Formula: see text] rise front the values for an [Formula: see text]CDM universe. Finally, we constrain the model parameters by using the maximum likelihood analysis and a combined dataset of baryon acoustic oscillation (BAO) and OHD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call