Abstract
Abstract We consider an anisotropic area-preserving nonlocal flow for closed convex plane curves, which is a generalization of the model introduced by Pan and Yang (J. Differential Equations 266 (2019), 3764–3786) when τ = 1. Under this flow, the evolving curve maintains its convexity and converges to a homothety of a smooth symmetric strictly convex plane curve in the C ∞ sense. The analysis of the asymptotic behavior of this flow implies the possibility of deforming one curve into another within the framework of Minkowski geometry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.