Abstract

AbstractA model for anisotropic and inhomogeneous Coulomb screening due to 2D and 3D carriers, is proposed in the Thomas–Fermi approximation. Analytical expressions for the screened interaction potentials and scattering matrix elements are obtained. This model is applied to the Auger relaxation of carriers in an InAs/InP quantum dot (QD) – wetting layer (WL) system. The influences of the QD morphology and carriers densities on screening and Auger effects are studied. 2D–2D scattering is found to be the most important process, depending especially on QD morphology. A smearing effect is associated to the wetting layer wavefunction extension along the growth axis. The screened potential is similar to a potential screened by 3D carriers. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.