Abstract
In this paper anisotropic and dispersive wave propagation within linear strain-gradient elasticity is investigated. This analysis reveals significant features of this extended theory of continuum elasticity. First, and contrarily to classical elasticity, wave propagation in hexagonal (chiral or achiral) lattices becomes anisotropic as the frequency increases. Second, since strain-gradient elasticity is dispersive, group and energy velocities have to be treated as different quantities. These points are first theoretically derived, and then numerically experienced on hexagonal chiral and achiral lattices. The use of a continuum model for the description of the high frequency behavior of these microstructured materials can be of great interest in engineering applications, allowing problems with complex geometries to be more easily treated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.