Abstract

The active Brownian particle (ABP) model describes a swimmer, synthetic or living, whose direction of swimming is a Brownian motion. The swimming is due to a propulsion force, and the fluctuations are typically thermal in origin. We present a two-dimensional model where the fluctuations arise from nonthermal noise in a propelling force acting at a single point, such as that due to a flagellum. We take the overdamped limit and find several modifications to the traditional ABP model. Since the fluctuating force causes a fluctuating torque, the diffusion tensor describing the process has a coupling between translational and rotational degrees of freedom. An anisotropic particle also exhibits a mass-dependent noise-induced drift, which does not disappear in the overdamped limit. We show that these effects have measurable consequences for the long-time diffusivity of active particles, in particular adding a contribution that is independent of where the force acts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call