Abstract

The low-energy plasmonic excitations of the Ge(0 0 1)-Au close to one monolayer coverage of Au were investigated by momentum-resolved high resolution electron energy loss spectroscopy. A very weak plasmonic loss was identified dispersing along the chain direction of the formed at these Au coverages. The measured dispersion was compared with the Tomonaga–Luttinger-liquid (TLL) model and with a model for an anisotropic Fermi liquid. Using the TLL model both for single and arrays of wires, no consistent picture turned up that could describe all available data. On the contrary, a quasi-one-dimensional model of a confined 2D electron gas gave a satisfactorily consistent description of the data. From these results for the collective low-energy excitations we conclude that the Ge(0 0 1)-Au system is reasonably well described by a strongly anisotropic 2D Fermi liquid, but is incompatible with a TLL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call