Abstract
The structural evolution of Ni/Al multilayer thin films with temperature was studied by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM) and X-ray diffraction (XRD). Thin films with nanometric Ni and Al alternated layers were deposited by d.c. magnetron sputtering. In our experiments, we used a bilayer thickness of 5, 14 and 30 nm and a total film thickness ranging from 2 to 2.7 μm. The XRD patterns of the as-deposited sample revealed only peaks of Al and Ni. DSC experiments were performed on freestanding films, from room temperature to 700 °C at 10 and 40 °C/min. Two exothermic reactions were detected in the DSC curves of the film with a 30 nm bilayer thickness, with peak temperatures at 230 and 330 °C. The films with 5 and 14 nm bilayer thickness presented only one exothermic peak at 190 and 250 °C, respectively. To identify the intermetallic reaction products, DSC samples were examined by XRD. NiAl formation corresponds to one single DSC peak, for films with short bilayer thicknesses (5 and 14 nm). The films with 30 nm bilayer thickness were heated at 250 °C ( T = T 1st peak), 300 °C ( T 1st peak < T < T 2nd peak), 450 °C ( T > T 2nd peak) and 700 °C. The XRD results indicated that at 250 °C the phase formed was NiAl 3, whilst NiAl 3 and Ni 2Al 3 phases were identified at 300 °C. For the 450 °C sample, only NiAl was detected. Further heating to 700 °C promotes the growth of NiAl grains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.