Abstract

BackgroundSerine proteinase inhibitors (serpins) finely regulate serine proteinase activity via a suicide substrate-like inhibitory mechanism. In parasitic nematodes, some serpins interact with host physiological processes; however, little is known about these essential molecules in Anisakis. This article reports the gene sequencing, cloning, expression and preliminary biochemical and bioinformatically-based structural characterization of a new Anisakis serpin (ANISERP).MethodsThe full AniSerp gene was cloned by specific RACE-PCR after screening an Anisakis simplex (L3) cDNA library. For biochemical assays, the AniSerp gene was subcloned into both prokaryotic and eukaryotic vectors, and the recombinant proteins were purified. The inhibitory properties of the proteins were tested in classical biochemical assays using human serine peptidases and AMC substrates. Immunolocalization of ANISERP, theoretical structural analysis and bioinformatically-based structural modelling of the ANISERP protein were also conducted.ResultsThe AniSerp gene was found to have 1194 nucleotides, coding for a protein of 397 amino acid residues plus a putative N-terminal signal peptide. It showed significant similarity to other nematode, arthropod and mammalian serpins. The recombinant ANISERP expressed in the prokaryotic and eukaryotic systems inhibited the human serine proteases thrombin, trypsin and cathepsin G in a concentration-dependent manner. No inhibitory activity against Factor Xa, Factor XIa, Factor XIIa, elastase, plasmin or chymotrypsin was observed. ANISERP also acted on the cysteine protease cathepsin L. ANISERP was mainly localized in the nematode pseudocoelomic fluid, somatic muscle cell bodies and intestinal cells. The findings of molecular dynamics studies suggest that ANISERP inhibits thrombin via a suicide substrate-like inhibitory mechanism, similar to the mechanism of action of mammalian coagulation inhibitors. In contrast to findings concerning human antithrombin III, heparin had no effect on ANISERP anticoagulant inhibitory activity.ConclusionsOur findings suggest that ANISERP is an internal Anisakis regulatory serpin and that the inhibitory activity against thrombin depends on a suicide substrate-like inhibitory mechanism, similar to that described for human antithrombin (AT)-III. The fact that heparin does not modulate the anticoagulant activity of ANISERP might be explained by the absence in the latter of five of the six positively charged residues usually seen at the AT-III-heparin binding site.

Highlights

  • Serine proteinase inhibitors finely regulate serine proteinase activity via a suicide substrate-like inhibitory mechanism

  • Bioinformatic analysis showed that the gene included a serpin signature (374–384 residues: FIADHPFIFTI) and a potential reactive centre loop (RCL) (p17 [E]-p16 [E/K/R]-p15 [G]-p14 [T/S]-p13 [X]-p12-9 [A/G/ S]-p8-1 [X]-p1′-4′)

  • ANISERP is an internally-secreted Anisakis serpin that displays in vitro inhibitory activity

Read more

Summary

Introduction

Serine proteinase inhibitors (serpins) finely regulate serine proteinase activity via a suicide substrate-like inhibitory mechanism. Some serpins interact with host physiological processes; little is known about these essential molecules in Anisakis. Anisakis spp. are parasitic nematodes that infect the gastrointestinal tract of sea mammals [1], producing gastric ulcers and haemorrhagic exudates; they can penetrate the abdominal cavity by crossing the gastrointestinal wall [2]. The serpins belong to the superfamily of serine peptidase inhibitors and are expressed by many organisms ranging from plants to vertebrates. They help to control proteolysis in molecular pathways associated with tissue homeostasis/ cell survival, development, and host defence [8]. Some have cross-class activity and can inhibit cysteine proteinases [9, 10]; others may even behave as non-inhibitory chaperones, tumour suppressors or transport molecules [8]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.