Abstract

In this work we compare the role that different anions play in the structure function S(q) for a set of liquids with the same cation. It is well established that because of their amphiphilic nature and their often larger size, cations play a fundamental role in the structural landscape of ionic liquids. On the other hand, it is often atoms in the anions that display the largest X-ray form factors and therefore play a very significant role as reporters of structure in small- and wide-angle X-ray scattering (SAXS/WAXS)-type experiments. For a set of liquids with similar topological landscape, how does S(q) change when the anionic scattering is deemphasized? Also, how do we computationally recover the typical length scale of important and perhaps universal ionic liquid structural features such as charge alternation when these are experimentally inaccessible from S(q) because of interference cancellations? We answer these questions by studying three different tetrapentylammonium-based liquids with the I(-), PF6(-) and N(CN)2(-) anions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.