Abstract

Perchlorate is one of a group of inorganic anions that potentiate excitation-contraction coupling in skeletal muscle. We have compared the effect of perchlorate on the sarcoplasmic reticulum (SR) Ca(2+)-release channel with the effect of inorganic phosphate (Pi), an anion which accumulates in skeletal muscle during exercise. Perchlorate and Pi (10-20 mM) stimulated Ca2+ release from SR vesicles 2- to 3-fold, respectively, and increased ryanodine binding to SR vesicles 1.5-fold. Stimulation of SR Ca(2+)-release channel activity by both perchlorate and Pi was maximal in the presence of micromolar Ca2+ and was associated with an increased affinity of the channel for ryanodine. Other anions known to potentiate muscle contraction (thiocyanate, iodide, and nitrate) also stimulated skeletal muscle SR Ca2+ release and ryanodine binding, as did the Pi analogue vanadate. However, none of the inorganic anions examined altered ryanodine binding to cardiac muscle SR. These results confirm that the SR Ca(2+)-release channel may be a primary site at which perchlorate and other potentiating anions affect skeletal muscle excitation-contraction coupling. In addition, these results demonstrate that the action of these anions on the SR Ca(2+)-release channel resembles that of Pi, a potential endogenous regulator of this channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call