Abstract

To examine charged sites on the peritoneal free surface, cationic and anionic colloidal iron methods were applied. Light microscopy of the human and mouse specimens using cationic colloidal iron staining at pH 1.5-7.3 and successive ferrocyanide treatment resulted in a distinct Prussian blue reaction on the free surface of the parietal, mesenteric and visceral peritonea at all the examined pH values. In transmission electron microscopy of specimens stained with cationic colloidal iron at pH 1.5, colloidal particles accumulated in a dotted fashion on the free surface of the mesothelial cells. At pH 7.3, colloidal particles were deposited as numerous fine strands (100-300 nm in length), whose ends often attached to the luminal aspect of the mesothelial cell membrane. Anionic colloidal iron stain at pH 7.2 gave no deposition of colloidal particles on the mesothelial free surface. Priorly methylated samples lost stainability of the peritoneal free surface to cationic colloidal iron staining at pH 1.5 or 2.5, while methylated-saponified sections recovered it. Pretreatment with neuraminidase inhibited the cationic colloidal iron staining at pH 1.5 on the mesothelial free surface. These results indicate that the mesothelial surface anionic sites ionizing at pH 1.5 are mostly due to the carboxyl group of sialic acid. It is suggested that the peritoneal free surface substance stained with the cationic colloidal iron may be membrane-associated sialomucin, whose rich negative-charged sites may repulse each other to prevent peritoneal adhesion or to maintain peritoneal cavity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.