Abstract

While the insertion of a hydrophobic peptide or membrane protein segment into the bilayer can be spontaneous and driven mainly by the hydrophobic effect, anionic lipids, which comprise ca. 20% of biological membranes, provide a source of electrostatic attractions for binding of proteins/peptides into membranes. To unravel the interplay of hydrophobicity and electrostatics in the binding of peptides into membranes, we designed peptides de novo which possess the typical sequence Lys-Lys-Ala-Ala-Ala-X-Ala-Ala-Ala-Ala-Ala-X-Ala-Ala-Trp-Ala-Ala-X-Ala-Al a-Ala-Lys-Lys-Lys-Lys-amide, where X residues correspond to "guest" residues which encompass a range of hydrophobicity (Leu, Ile, Gly, and Ser). Circular dichroism spectra demonstrated that peptides were partially (40-90%) random in aqueous buffer but were promoted to form 100% alpha-helical structures by anionic lipid micelles. In neutral lipid micelles, only the relatively hydrophobic peptides (X = L and I) spontaneously adopted the alpha-helical conformation, but when 25% of negatively charged lipids were mixed in to mimic the content of anionic lipids in biomembranes, the less hydrophobic (X = S and G) peptides then formed alpha-helical conformations. Consistent with these findings, fluorescence quenching by the aqueous-phase quencher iodide indicated that in anionic (dimyristoylphosphatidylglycerol) vesicles, the peptide Trp residue was buried in the lipid vesicle hydrophobic core, while in neutral (dimyristoylphosphatidylcholine) vesicles, only hydrophobic (X = L and I) peptides were shielded from the aqueous solution. Trp emission spectra of peptides in the presence of phospholipids doxyl-labeled at the 5-, 7-, 10-, 12-, and 16-fatty acid positions implied not only a transbilayer orientation for inserted peptides but also that mixed peptide populations (transbilayer + surface-associated) may arise. Overall results suggest that for hydrophobic peptides with segmental threshold hydrophobicity below that which promotes spontaneous membrane insertion, primary electrostatic attractions provided by anionic phospholipids become essential for peptide binding and insertion to membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.