Abstract

Diffusion Monte Carlo calculations are carried out for clusters of OH- (1Sigma+) with N 4He atoms, N varying up to 15, while classical configurations from a genetic algorithm optimization are obtained up to N=20. The overall interaction potential is assembled from ab initio data for the partners using the sum-of-potentials scheme. In contrast with the cationic dopants' behavior, the results indicate a very marked spatial delocalization and quantum features of the solvent adatoms surrounding the anionic impurity, thus making classical calculations of solvent's spatial locations of only limited use. In spite of the generally known repulsive interaction of negative charges in He droplets, the calculations show that this polar molecular anion is solvated by a liquidlike solvent layer, reminiscent of what happens in pure helium droplets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.