Abstract

We report a Förster resonance energy transfer (FRET)-based imaging ensemble for the visualization of membrane potential in living cells. A water-soluble poly(fluorene-cophenylene) conjugated polyelectrolyte (FsPFc10) serves as a FRET donor to a voltage-sensitive dye acceptor (FluoVolt™ ). We observe FRET between FsPFc10 and FluoVolt™ , where the enhancement in FRET-sensitized emission from FluoVolt™ is measured at various donor/acceptor ratios. At a donor/acceptor ratio of 1, the excitation of FluoVolt™ in a FRET configuration results in a three-fold enhancement in its fluorescence emission (compared to when it is excited directly). FsPFc10 efficiently labels the plasma membrane of HEK 293T/17 cells and remains resident with minimal cellular internalization for~1.5h. The successful plasma membrane-associated colabeling of the cells with the FsPFc10-FluoVolt™ donor-acceptor pair is confirmed by dual-channel confocal imaging. Importantly, cells labeled with FsPFc10 show excellent cellular viability with no adverse effect on cell membrane depolarization. During depolarization of membrane potential, HEK 293T/17 cells labeled with the donor-acceptor FRET pair exhibit a greater fluorescence response in FluoVolt™ emission relative to when FluoVolt™ is used as the sole imaging probe. These results demonstrate the conjugated polyelectrolyte to be a new class of membrane labeling fluorophore for use in voltage sensing schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.