Abstract

Many chemical modifications of starch are realized in organic (mostly methanol) phase, allowing high degrees of substitution (DS). Some of these materials are used as disintegrants. To expand the usage of starch derivative biopolymers as drug delivery system, various starch derivatives obtained in aqueous phase were evaluated with the aim to identify materials and procedures which would generate multifunctional excipients providing gastro-protection for controlled drug delivery. Chemical, structural and thermal characteristics of anionic and ampholytic High Amylose Starch (HAS) derivatives under powder (P), tablet (T) and film (F) forms were evaluated by X-ray Diffraction (XRD), Fourier Transformed Infrared (FTIR) and thermogravimetric analysis (TGA) methods and correlated with the behavior of tablets and films in simulated gastric and intestinal media. At low DS, the HAS carboxymethylation (CMHAS) in aqueous phase, generated tablets and films that were insoluble at ambient conditions. The CMHAS filmogenic solutions, with a lower viscosity, were easier to cast and gave smooth films without the use of plasticizer. Correlations were found between structural parameters and the properties of starch excipients. Compared to other starch modification procedures, the aqueous modification of HAS generated tunable multifunctional excipients that may be recommended for tablets and functional coatings for colon-targeted formulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.