Abstract

Shape-persistent macrocycles enable superior control on molecular self-assembly, allowing the preparation of well-defined nanostructures with new functions. Here, we report on anionic amphiphilic calixarenes of conic shape and their self-assembly behavior in aqueous media for application in intracellular delivery of peptides. Newly synthesized calixarenes bearing four phosphonate groups and two or four long alkyl chains were found to form micelles of ∼ 10 nm diameter, in contrast to an analogue with short alkyl chains. These amphiphilic calixarenes are able to complex model (oligo-lysine) and biologically relevant (HIV-1 nucleocapsid peptide) cationic peptides into small nanoparticles (20–40 nm). By contrast, a control anionic calixarene with short alkyl chains fails to form small nanoparticles with peptides, highlighting the importance of micellar assembly of amphiphilic calixarenes for peptide complexation. Cellular studies reveal that anionic amphiphilic calixarenes exhibit low cytotoxicity and enable internalization of fluorescently labelled peptides into live cells. These findings suggest anionic amphiphilic macrocycles as promising building blocks for the preparation of peptide delivery vehicles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.