Abstract

The transport mechanisms for anionic amino acids in trophoblast microvillous (maternal facing) membrane were investigated by characterization of L-[3H]aspartate and L-[3H]glutamate uptake in membrane vesicles. Uptake of the anionic amino acids was by a single high-affinity Na+-dependent K+-stimulated cotransporter that is pH sensitive and electrogenic. A second Na+-dependent transporter could not be discriminated, and there was no observable Na+-independent uptake. An outwardly directed K+ gradient (100 mM KCl inside) resulted in a 5- to 10-fold stimulation in glutamate uptake in the presence of Na+. Intravesicular KCl had no effect on transporter affinity but increased transporter velocity in a concentration-dependent manner. Inhibition of Na+-K+-dependent uptake of L-aspartate and L-glutamate (20 mM, 30 s) by 2 mM unlabeled amino acids demonstrated stereoselectivity for L-glutamate but not for L-aspartate. The neutral amino acids (L-alanine, L-threonine, L-serine, L-cysteine, L-phenylalanine) were not effective inhibitors. These data are consistent with an anionic amino acid transporter in the microvillous membrane of the trophoblast, which has characteristics qualitatively similar to the X-AG system found in other epithelia. This system may mediate the concentrative placental uptake of anionic amino acids from maternal blood in utero.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.