Abstract

The transport mechanisms for anionic amino acids in trophoblast microvillous (maternal facing) membrane were investigated by characterization of L-[3H]aspartate and L-[3H]glutamate uptake in membrane vesicles. Uptake of the anionic amino acids was by a single high-affinity Na+-dependent K+-stimulated cotransporter that is pH sensitive and electrogenic. A second Na+-dependent transporter could not be discriminated, and there was no observable Na+-independent uptake. An outwardly directed K+ gradient (100 mM KCl inside) resulted in a 5- to 10-fold stimulation in glutamate uptake in the presence of Na+. Intravesicular KCl had no effect on transporter affinity but increased transporter velocity in a concentration-dependent manner. Inhibition of Na+-K+-dependent uptake of L-aspartate and L-glutamate (20 mM, 30 s) by 2 mM unlabeled amino acids demonstrated stereoselectivity for L-glutamate but not for L-aspartate. The neutral amino acids (L-alanine, L-threonine, L-serine, L-cysteine, L-phenylalanine) were not effective inhibitors. These data are consistent with an anionic amino acid transporter in the microvillous membrane of the trophoblast, which has characteristics qualitatively similar to the X-AG system found in other epithelia. This system may mediate the concentrative placental uptake of anionic amino acids from maternal blood in utero.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.