Abstract
Abstract Structures of amidinourea–metal complexes have been obscured by subtle tautomerism and crystal waters. To clarify the most stable form of the tautomers, bis(amidinourea)copper(II) anhydride and the alkyl derivatives were synthesized under basic conditions, and the stability of the CuN2O2 chromophore was suggested. From substituent effects of chelations, UV–vis spectra, IR/Raman spectra, and DFT calculations, it was suggested that the bis(amidinourea)copper(II) has a CuN2O2 chromophore, not CuN4 chromophore. The mutual exclusion rule of IR/Raman spectra supported the trans-CuN2O2 chromophore. Systematic calculations on bis(amidinourea)–Cu(II), –Ni(II), –Pd(II), –Zn(II), and –Cd(II) chelates revealed that the robust stability of CuN2O2 chromophores originates from quasi aromaticity in the six-membered chelate rings. cis- or trans-CuN4 stability reported in the early references is suspicious.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.