Abstract

To design pnictide nonlinear optical materials with wide band gap and large second-harmonic generation, the heavy halogen I was introduced into pnictides through anionic aliovalent substitution with diamond-like ZnS as templates. Thus, four excellent halopnictide-based infrared nonlinear optical crystals, MII 3 PnI3 (MII =Zn, Cd; Pn=P, As), were obtained. They all exhibited defect diamond-like structures with highly parallel-oriented [MII PnI3 ] mixed-anionic tetrahedral groups, leading to excellent physical properties including wide band gaps (2.38-2.85 eV), large second harmonic generation responses (2.7-5.1×AgGaS2 ), high laser-induced damage thresholds (5.5-10.7×AgGaS2 ), and good IR transparency. In particular, Cd3 PI3 and Cd3 AsI3 achieved phase-matching (Δn=0.035 and 0.031) that their template β-ZnS could not do. Anionic aliovalent substitution provides a feasible strategy to design novel promising halopnictide IR NLO materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.