Abstract

A series of quaternized-chitosan derivatives (QCDs) with various degrees of quaternization was synthesized using glycidyltrimethylammonium chloride as a main quaternized reagent. These QCDs were then processed into hydroxide—form quaternary ammonium salts with aqueous potassium hydroxide solutions. The resultant hydroxide—form QCD gels were further crosslinked into anion-exchange membranes using ethylene glycol diglycidyl ether. The crosslinking density, crystallinity, swelling index, ion exchange capacity, ionic conductivity and thermal stability of the crosslinked membranes were subsequently investigated. It was found that properties of crosslinked membranes were modulated mainly by the degree of quaternization and crosslinking density of membranes. Some membranes exhibited promising characteristics and had the potential for applications in alkaline polymer electrolyte fuel cells in considering their integrative properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.